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y(x) is D-finite if Jag(x), ..., ar(x) € Z[x] not all zero such that
ar(x)y\)(x) + -+ + ao(x)y(x) = 0.
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Power series hierarchy

= Z upx" € Q[x]
n>0

Algebraic series D-finite

y(x) is algebraic over Q(x) if 3P(x, Y) € Z[x, Y], P(x, y(x)) = 0. )
Algebraic

D-finite series

y(x) is D-finite if Jap(x),. .., ar(x) € Z[x] not all zero such that

ar()yD(x)+ -+ ao(x)y( ) =0. Rational

Theorem (Abel, 1827)

Algebraic series are D-finite.
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[Risch, 1971], [Baldassari-Dwork, 1979], [Davenport, 1981], Risch’s algorithm. J

Special case of Grothendieck's conjecture, [Chudnovsky?, 1985]

All solutions of y'(x) = u(x)y(x) are algebraic over Q(x) if and only if for almost all
prime numbers p, all solutions of y’(x) = (u(x) mod p)y(x) are algebraic over F,(x).
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The p-curvature conjecture

y'(x) = u(x)y(x) (Eq) _ a(x) )
{ y'(x) = (u(x) mod p)y(x) (Eq), with u(x) = € Q(x).

To (Eq),, attach the p-curvature u(P=1)(x) 4 u(x)? mod p € F,(x) [Jacobson, 1937]. J

Special case of Cartier's Lemma

The p-curvature is zero if and only if (Eq), has a basis of algebraic solutions.

Special case of Grothendieck's p-curvature conjecture, [Chudnovsky?, 1985; Honda,

1974]

All solutions of (Eq) are algebraic over Q(x) if and only if for almost all prime numbers
p. the p-curvature of (Eq), vanishes.

= =



From p-curvatures to polynomials

Theorem (Honda, 1974)

The p-curvature conjecture holds for equations y'(x) = u(x)y(x) with u(x) = B0

a(x), b(x) € Q[x].
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Let R(w) € Q[w] be irreducible. If for almost all prime numbers p the polynomial
R(w) mod p has a root in IFp, then R(w) has a root in Q, and hence it is linear.




From p-curvatures to polynomials

Theorem (Honda, 1974)

The p-curvature conjecture holds for equations y'(x) = u(x)y(x) with u(x) = 2(x)

o b(x)’
a(x), b(x) € Q[x].

Theorem (Kronecker, 1880; Chebotarev, 1926)

Let R(w) € Q[w] be irreducible. If for almost all prime numbers p the polynomial
R(w) mod p has a root in IFp, then R(w) has a root in Q, and hence it is linear.

Spoiler: Honda's Theorem is equivalent to Kronecker's Theorem.




Towards effectivity

Theorem (Rothstein, 1976; Trager, 1976)
Let u(x) € Q(x) be a rational function of the form

i) = G0 _
0 =500~ x5

with a(x), b(x) € Z[x]. Then the residues «; are precisely the roots of

R(w) = resy(b(x), a(x) — w - b/'(x)) € Z[w].
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y'(x) = u(x)y(x) (Eq) with u(x) = ag;’ and R(w) = res,(b(x), a(x) — w - b'(x)).

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

(1)p (Eq)p has an algebraic solution in Fp[x].

(2), We have deg a(x) < deg b(x), all poles
of u(x) are simple, and R(w) splits
completely in Fp[w].

(3), We have u(x)P + uP~)(x) mod p = 0. |

Proposition (Folklore; Honda, 1981)

The following are equivalent:

(1) (Eq) has an algebraic solution.

(2) We have deg a(x) < deg b(x),
all poles of u(x) are simple, and
R(w) splits completely in Q[w]. )

Kronecker's Theorem: (2), for almost all prime numbers p implies (2).

Can we deduce (2) from (2), for a finite number of primes? ]
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= not dividing A,
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Effective Kronecker

Theorem (Chudnovsky?, 1985)

Let R(w) € Z|w]| with leading coefficient A € Z.

There exists o € N such that R(w) splits completely over Q if and only if R(w) mod p
splits completely over IF,, for all primes p:

= not dividing A,

= at most o.

.

Theorem (Firnsinn-P., 2025+)

In the previous theorem, one can choose o = (2M + 1)N + 2M with
M = [2.826 - A3- t(A)], N := [6.076BM], where t(A) =[], n p/"~Y) and B € R
is an upper bound on the modulus of all complex roots of R(w).

Criterion: If p <o, p /A and R(w) mod p does not split completely in Fp,, then
R(w) does not split completely in Q.

A




Hermite-Padé approximation

Given power series fi(x), ..., f,(x) € Q[x] and n,s € N, find polynomials P;(x) € Q[x]
such that deg(P;(x)) < n and

Pi(x)f(x) + - + P(x)f(x) € x*Q[x]-
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Hermite-Padé approximation

Given power series fi(x), ..., f,(x) € Q[x] and n,s € N, find polynomials P;(x) € Q[x]
such that deg(P;(x)) < n and

Pi(x)f(x) + - + P(x)f(x) € x*Q[x]-

= r(n+ 1) indeterminates, s linear homogeneous equations = s = r(n+ 1) — 1.
[Hermite, 1873] e is transcendental, [Padé, 1894], [Mahler, 1931].

Idea to prove algebraicity: With f;(x) = f'~1(x), f(x) is algebraic if and only if for
the optimal P;'s, the remainder P1(x) + Pa(x)f(x) + - -+ + P,(x)f"~1(x) vanishes for
large n, r.
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Chudnovskys' proof of Kronecker's Theorem

Proof. By contradiction, assume R(w) has a root o ¢ Q. Write L := Q(«).
We know explicit Hermite-Padé approximants P;(z) € L[z], deg(Pi(z)) < N to the
powers of (1 — z)*

Po(z) + P1(z)(1 — 2)* + -+ - + Pom(2)(1 — 2)2M0‘ =gz° + O(z‘”‘l)

NI12M+1 oM -
with o = (2M + 1)N +2M, g = —— € @, Po(0) = | [ (*"y" 1) |
o:

j=1
For all v € L\ {0}, ‘den(’y)[L:Q] NormL/Q(fy)’ > 1.

~~

€Z
Construct ym.n € L, ymn # 0, such that when N >> M >> 0,

’den('yMN)[L:Q] NormL/Q('yMN)‘ < 1.



Effective Honda

Corollary [Chudnovsky?, 1985; Fiirnsinn-P., 2025+ ]

Let a(x), b(x) € Z[x], deg(a(x)) < n := deg(b(x)) and

R(w) = resy(b(x), a(x) — w - b'(x)) € Q[w],

with leading coefficient A := res,(b(x), —b'(x)), t =[], pt/(P=1),

Let B € R be an upper bound on the modulus of all complex roots of R(w).

Let M == [2.826- A3 t(A)] and N = [6.076BM].

All solutions of y'(x) = %y(x) are algebraic if and only if the p-curvatures of the
differential equation vanish for all primes p:

= not dividing A;

= at most 0 := (2M + 1)N + 2M.
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Output The nature (algebraic or transcendental) of the solutions of y/(x) = b(x)y(x).
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Input a(x), b(x) € Z[x], b(x) squarefree, deg(a(x)) < deg(b(x)).

Output The nature (algebraic or transcendental) of the solutions of y/(x) = 2 y(x).
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2. M :=[2.826 A3 t(A)], N = 10BM, o := (2M + 1)N + 2M, p « 2;
3. while p < o
i. if p /A, then compute the p-curvature;

ii. if p-curvature # 0, then return transcendental, else p < nextprime(p);
4. return algebraic.
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Alternative approaches: Given a(x), b(x) € Z[x] of degree at most n and coefficients
at most H, one can either compute R(w) = resy(b(x), a(x) — w - b'(x)) and find its
rational roots, or compute the indicial equations to decide transcendence.
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Comparison

= Polynomial in n and log(H).

= For u(x) = ij;;{l o = 1926284. Runtime: ~ 8 min for p-curvatures vs < 1 ms.

— Try on random examples that will return transcendental.

Degree | Height | p-curv | IE | RT+RR

10 210 1ms [12ms]| 3 ms
20 210 2ms |24 ms| 10 ms
20 220 2ms |25 ms | 21 ms

160 210 04s | 18s 24s
160 220 04s | 19s 40 s

Table: Average computation time of algorithms deciding transcendence of solutions on random
rational function inputs of prescribed degree and height.



Perspectives

Make all proved cases of Grothendieck's p-curvature conjecture effective. J
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Thank you for your attention.



