https://arxiv.org/abs/2510.00892

An effective proof of the *p*-curvature conjecture for order one linear differential equations joint work with Florian Fürnsinn.

Lucas Pannier

Laboratoire de Mathématiques de Versailles, UVSQ CNRS UMR-8100

October 6th 2025 EThéN school in number theory.

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Algebraic series

y(x) is algebraic over $\mathbb{Q}(x)$ if $\exists P(x,Y) \in \mathbb{Z}[x,Y]$, P(x,y(x)) = 0.

Algebraic

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Algebraic series

$$y(x)$$
 is algebraic over $\mathbb{Q}(x)$ if $\exists P(x,Y) \in \mathbb{Z}[x,Y]$, $P(x,y(x)) = 0$.

$$\rightarrow y(x) = (1-x)^{2/5} = 1 - \frac{2}{5}x + \frac{6}{50}x^2 + \dots, \ y(x)^5 - (x-1)^2 = 0.$$

Algebraic

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

D-finite

Algebraic series

$$y(x)$$
 is algebraic over $\mathbb{Q}(x)$ if $\exists P(x,Y) \in \mathbb{Z}[x,Y]$, $P(x,y(x)) = 0$.

$$y(x) = (1-x)^{2/5} = 1 - \frac{2}{5}x + \frac{6}{50}x^2 + \dots, y(x)^5 - (x-1)^2 = 0.$$

D-finite series

y(x) is D-finite if $\exists a_0(x), \ldots, a_r(x) \in \mathbb{Z}[x]$ not all zero such that $a_r(x)y^{(r)}(x) + \cdots + a_0(x)y(x) = 0$.

Algebraic

$$y(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Algebraic series

y(x) is algebraic over $\mathbb{Q}(x)$ if $\exists P(x,Y) \in \mathbb{Z}[x,Y]$, P(x,y(x)) = 0.

$$y(x) = (1-x)^{2/5} = 1 - \frac{2}{5}x + \frac{6}{50}x^2 + \dots$$
, $y(x)^5 - (x-1)^2 = 0$.

D-finite series

y(x) is D-finite if $\exists a_0(x), \ldots, a_r(x) \in \mathbb{Z}[x]$ not all zero such that $a_r(x)y^{(r)}(x) + \cdots + a_0(x)y(x) = 0$.

$$\rightarrow y(x) = \exp(x^2 + 1)$$
 satisfies $y'(x) - 2xy(x) = 0$.

D-finite

Algebraic

$$y(x) = \sum_{n>0} u_n x^n \in \mathbb{Q}[\![x]\!]$$

Algebraic series

y(x) is algebraic over $\mathbb{Q}(x)$ if $\exists P(x,Y) \in \mathbb{Z}[x,Y]$, P(x,y(x)) = 0.

D-finite series

y(x) is D-finite if $\exists a_0(x), \ldots, a_r(x) \in \mathbb{Z}[x]$ not all zero such that $a_r(x)y^{(r)}(x) + \cdots + a_0(x)y(x) = 0$.

Theorem (Abel, 1827)

Algebraic series are D-finite.

Algebraic

Deciding algebraicity

Abel's problem

Let $u(x) \in \overline{\mathbb{Q}(x)}$, decide if the nonzero solutions of y'(x) = u(x)y(x) are algebraic.

Deciding algebraicity

Abel's problem

Let $u(x) \in \overline{\mathbb{Q}(x)}$, decide if the nonzero solutions of y'(x) = u(x)y(x) are algebraic.

[Risch, 1971], [Baldassari-Dwork, 1979], [Davenport, 1981], Risch's algorithm.

Deciding algebraicity

Abel's problem

Let $u(x) \in \overline{\mathbb{Q}(x)}$, decide if the nonzero solutions of y'(x) = u(x)y(x) are algebraic.

[Risch, 1971], [Baldassari-Dwork, 1979], [Davenport, 1981], Risch's algorithm.

Special case of Grothendieck's conjecture, [Chudnovsky², 1985]

All solutions of y'(x) = u(x)y(x) are algebraic over $\mathbb{Q}(x)$ if and only if for almost all prime numbers p, all solutions of $y'(x) = (u(x) \mod p)y(x)$ are algebraic over $\mathbb{F}_p(x)$.

$$\left\{ \begin{array}{ll} y'(x) &= u(x)y(x) & (\mathsf{Eq}) \\ y'(x) &= (u(x) \bmod p)y(x) & (\mathsf{Eq})_p \end{array} \right. \text{ with } u(x) = \frac{\mathsf{a}(x)}{\mathsf{b}(x)} \in \mathbb{Q}(x).$$

$$\left\{ \begin{array}{ll} y'(x) &= u(x)y(x) & (\mathsf{Eq}) \\ y'(x) &= (u(x) \bmod p)y(x) & (\mathsf{Eq})_p \end{array} \right. \text{ with } u(x) = \frac{\mathsf{a}(x)}{\mathsf{b}(x)} \in \mathbb{Q}(x).$$

To $(Eq)_p$, attach the *p*-curvature $u^{(p-1)}(x) + u(x)^p \mod p \in \mathbb{F}_p(x)$ [Jacobson, 1937].

$$\left\{ \begin{array}{ll} y'(x) &= u(x)y(x) & (\mathsf{Eq}) \\ y'(x) &= (u(x) \bmod p)y(x) & (\mathsf{Eq})_p \end{array} \right. \text{ with } u(x) = \frac{\mathsf{a}(x)}{\mathsf{b}(x)} \in \mathbb{Q}(x).$$

To $(Eq)_p$, attach the *p*-curvature $u^{(p-1)}(x) + u(x)^p \mod p \in \mathbb{F}_p(x)$ [Jacobson, 1937].

Special case of Cartier's Lemma

The p-curvature is zero if and only if $(Eq)_p$ has a basis of algebraic solutions.

To $(Eq)_p$, attach the *p*-curvature $u^{(p-1)}(x) + u(x)^p \mod p \in \mathbb{F}_p(x)$ [Jacobson, 1937].

Special case of Cartier's Lemma

The p-curvature is zero if and only if $(Eq)_p$ has a basis of algebraic solutions.

Special case of Grothendieck's p-curvature conjecture, [Chudnovsky², 1985; Honda, 1974]

All solutions of (Eq) are algebraic over $\mathbb{Q}(x)$ if and only if for almost all prime numbers p, the p-curvature of (Eq) $_p$ vanishes.

From *p*-curvatures to polynomials

Theorem (Honda, 1974)

The p-curvature conjecture holds for equations y'(x) = u(x)y(x) with $u(x) = \frac{a(x)}{b(x)}$, $a(x), b(x) \in \overline{\mathbb{Q}}[x]$.

From *p*-curvatures to polynomials

Theorem (Honda, 1974)

The p-curvature conjecture holds for equations y'(x) = u(x)y(x) with $u(x) = \frac{a(x)}{b(x)}$, $a(x), b(x) \in \overline{\mathbb{Q}}[x]$.

Theorem (Kronecker, 1880; Chebotarev, 1926)

Let $R(w) \in \mathbb{Q}[w]$ be irreducible. If for almost all prime numbers p the polynomial $R(w) \mod p$ has a root in \mathbb{F}_p , then R(w) has a root in \mathbb{Q} , and hence it is linear.

From *p*-curvatures to polynomials

Theorem (Honda, 1974)

The p-curvature conjecture holds for equations y'(x) = u(x)y(x) with $u(x) = \frac{a(x)}{b(x)}$, $a(x), b(x) \in \overline{\mathbb{Q}}[x]$.

Theorem (Kronecker, 1880; Chebotarev, 1926)

Let $R(w) \in \mathbb{Q}[w]$ be irreducible. If for almost all prime numbers p the polynomial $R(w) \mod p$ has a root in \mathbb{F}_p , then R(w) has a root in \mathbb{Q} , and hence it is linear.

Spoiler: Honda's Theorem is equivalent to Kronecker's Theorem.

Towards effectivity

Theorem (Rothstein, 1976; Trager, 1976)

Let $u(x) \in \mathbb{Q}(x)$ be a rational function of the form

$$u(x) = \frac{a(x)}{b(x)} = \sum_{i=1}^{r} \frac{\alpha_i}{x - \beta_i},$$

with $a(x), b(x) \in \mathbb{Z}[x]$. Then the residues α_i are precisely the roots of

$$R(w) := \operatorname{res}_{x}(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Z}[w].$$

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := res_x(b(x), a(x) - w \cdot b'(x))$.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := res_x(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := res_x(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- $(1)_p$ (Eq)_p has an algebraic solution in $\mathbb{F}_p[\![x]\!]$.
- (2)_p We have deg $a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3)_p We have $u(x)^p + u^{(p-1)}(x) \mod p = 0$.

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := \text{res}_x(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- $(1)_p$ (Eq)_p has an algebraic solution in $\mathbb{F}_p[\![x]\!]$.
- (2)_p We have deg $a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3)_p We have $u(x)^p + u^{(p-1)}(x) \mod p = 0$.

Kronecker's Theorem: $(2)_p$ for almost all prime numbers p implies (2).

$$y'(x) = u(x)y(x)$$
 (Eq) with $u(x) = \frac{a(x)}{b(x)}$, and $R(w) := res_x(b(x), a(x) - w \cdot b'(x))$.

Proposition (Folklore; Honda, 1981)

The following are equivalent:

- (1) (Eq) has an algebraic solution.
- (2) We have $\deg a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{Q}[w]$.

Proposition (Honda, 1981)

Let p be a prime number. TFAE:

- $(1)_p \ (\mathsf{Eq})_p \ \textit{has an algebraic solution in } \mathbb{F}_p[\![x]\!].$
- (2)_p We have deg $a(x) < \deg b(x)$, all poles of u(x) are simple, and R(w) splits completely in $\mathbb{F}_p[w]$.
- (3)_p We have $u(x)^p + u^{(p-1)}(x) \mod p = 0$.

Kronecker's Theorem: $(2)_p$ for almost all prime numbers p implies (2).

Can we deduce (2) from $(2)_p$ for a *finite* number of primes?

Effective Kronecker

Theorem (Chudnovsky², 1985)

Let $R(w) \in \mathbb{Z}[w]$ with leading coefficient $\Delta \in \mathbb{Z}$.

There exists $\sigma \in \mathbb{N}$ such that R(w) splits completely over \mathbb{Q} if and only if R(w) mod p splits completely over \mathbb{F}_p for all primes p:

- not dividing Δ ,
- at most σ .

Effective Kronecker

Theorem (Chudnovsky², 1985)

Let $R(w) \in \mathbb{Z}[w]$ with leading coefficient $\Delta \in \mathbb{Z}$.

There exists $\sigma \in \mathbb{N}$ such that R(w) splits completely over \mathbb{Q} if and only if R(w) mod p splits completely over \mathbb{F}_p for all primes p:

- not dividing Δ ,
- at most σ .

Theorem (Fürnsinn-P., 2025+)

In the previous theorem, one can choose $\sigma=(2M+1)N+2M$ with $M:=\lceil 2.826\cdot \Delta^3\cdot t(\Delta)\rceil$, $N:=\lceil 6.076BM\rceil$, where $t(\Delta):=\prod_{p\mid \Delta}p^{1/(p-1)}$ and $B\in\mathbb{R}$ is an upper bound on the modulus of all complex roots of R(w).

Effective Kronecker

Theorem (Chudnovsky², 1985)

Let $R(w) \in \mathbb{Z}[w]$ with leading coefficient $\Delta \in \mathbb{Z}$.

There exists $\sigma \in \mathbb{N}$ such that R(w) splits completely over \mathbb{Q} if and only if R(w) mod p splits completely over \mathbb{F}_p for all primes p:

- not dividing Δ ,
- at most σ .

Theorem (Fürnsinn-P., 2025+)

In the previous theorem, one can choose $\sigma=(2M+1)N+2M$ with $M:=\left\lceil 2.826\cdot\Delta^3\cdot t(\Delta)\right\rceil$, $N:=\left\lceil 6.076BM\right\rceil$, where $t(\Delta):=\prod_{p\mid\Delta}p^{1/(p-1)}$ and $B\in\mathbb{R}$ is an upper bound on the modulus of all complex roots of R(w).

Criterion: If $p \leq \sigma$, $p \not\mid \Delta$ and $R(w) \mod p$ does not split completely in \mathbb{F}_p , then R(w) does not split completely in \mathbb{Q} .

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in x^s\mathbb{Q}[\![x]\!].$$

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in \mathbf{x^5}\mathbb{Q}[\![x]\!].$$

• r(n+1) indeterminates, s linear homogeneous equations

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in x^s\mathbb{Q}[\![x]\!].$$

• r(n+1) indeterminates, s linear homogeneous equations $\Rightarrow s = r(n+1) - 1$.

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in x^s\mathbb{Q}[\![x]\!].$$

• r(n+1) indeterminates, s linear homogeneous equations $\Rightarrow s = r(n+1) - 1$. [Hermite, 1873] e is transcendental, [Padé, 1894], [Mahler, 1931].

Given power series $f_1(x), \ldots, f_r(x) \in \mathbb{Q}[\![x]\!]$ and $n, s \in \mathbb{N}$, find polynomials $P_i(x) \in \mathbb{Q}[\![x]\!]$ such that $\deg(P_i(x)) \leq n$ and

$$P_1(x)f_1(x)+\cdots+P_r(x)f_r(x)\in x^s\mathbb{Q}[\![x]\!].$$

• r(n+1) indeterminates, s linear homogeneous equations $\Rightarrow s = r(n+1) - 1$. [Hermite, 1873] e is transcendental, [Padé, 1894], [Mahler, 1931].

Idea to prove algebraicity: With $f_i(x) = f^{i-1}(x)$, f(x) is algebraic if and only if for the optimal P_i 's, the remainder $P_1(x) + P_2(x)f(x) + \cdots + P_r(x)f^{r-1}(x)$ vanishes for large n, r.

Proof.

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$.

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$. We know **explicit** Hermite-Padé approximants $P_i(z) \in L[z]$, $\deg(P_i(z)) \leq N$ to the powers of $(1-z)^{\alpha}$

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \cdots + P_{2M}(z)(1-z)^{2M\alpha} = gz^{\sigma} + O(z^{\sigma+1})$$

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$. We know **explicit** Hermite-Padé approximants $P_i(z) \in L[z]$, $\deg(P_i(z)) \leq N$ to the powers of $(1-z)^{\alpha}$

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \cdots + P_{2M}(z)(1-z)^{2M\alpha} = gz^{\sigma} + O(z^{\sigma+1})$$

with
$$\sigma = (2M+1)N + 2M$$
, $g = \frac{N!^{2M+1}}{\sigma!} \in \mathbb{Q}^*$, $P_0(0) = \left(\prod_{j=1}^{2M} {j\alpha+N-1 \choose N}\right)^{-1}$.

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$. We know **explicit** Hermite-Padé approximants $P_i(z) \in L[z]$, $\deg(P_i(z)) \leq N$ to the powers of $(1-z)^{\alpha}$

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \cdots + P_{2M}(z)(1-z)^{2M\alpha} = gz^{\sigma} + O(z^{\sigma+1})$$

with
$$\sigma = (2M+1)N + 2M$$
, $g = \frac{N!^{2M+1}}{\sigma!} \in \mathbb{Q}^*$, $P_0(0) = \left(\prod_{j=1}^{2M} {j\alpha + N - 1 \choose N}\right)^{-1}$.

$$\text{For all } \gamma \in L \setminus \{0\}, \ \underbrace{\left| \operatorname{den}(\gamma)^{[L:\mathbb{Q}]} \operatorname{Norm}_{L/\mathbb{Q}}(\gamma) \right|}_{\in \mathbb{Z}} \geq 1.$$

Chudnovskys' proof of Kronecker's Theorem

Proof. By contradiction, assume R(w) has a root $\alpha \notin \mathbb{Q}$. Write $L := \mathbb{Q}(\alpha)$. We know **explicit** Hermite-Padé approximants $P_i(z) \in L[z]$, $\deg(P_i(z)) \leq N$ to the powers of $(1-z)^{\alpha}$

$$P_0(z) + P_1(z)(1-z)^{\alpha} + \cdots + P_{2M}(z)(1-z)^{2M\alpha} = gz^{\sigma} + O(z^{\sigma+1})$$

with
$$\sigma = (2M+1)N + 2M$$
, $g = \frac{N!^{2M+1}}{\sigma!} \in \mathbb{Q}^*$, $P_0(0) = \left(\prod_{j=1}^{2M} {j\alpha+N-1 \choose N}\right)^{-1}$.

$$\text{For all } \gamma \in L \setminus \{0\}, \ \underbrace{\left| \mathsf{den}(\gamma)^{[L:\mathbb{Q}]} \, \mathsf{Norm}_{L/\mathbb{Q}}(\gamma) \right|}_{\mathbb{C}^{\mathbb{Z}}} \geq 1.$$

Construct $\gamma_{M,N} \in L$, $\gamma_{M,N} \neq 0$, such that when N >> M >> 0,

$$\left| \mathsf{den}(\gamma_{M,N})^{[L:\mathbb{Q}]} \, \mathsf{Norm}_{L/\mathbb{Q}}(\gamma_{M,N})
ight| < 1.$$

Effective Honda

Corollary [Chudnovsky², 1985; Fürnsinn-P., 2025+]

Let $a(x), b(x) \in \mathbb{Z}[x]$, $\deg(a(x)) < n := \deg(b(x))$ and

$$R(w) := \operatorname{res}_{x}(b(x), a(x) - w \cdot b'(x)) \in \mathbb{Q}[w],$$

with leading coefficient $\Delta := \operatorname{res}_{x}(b(x), -b'(x)), \ t := \prod_{p \mid \Delta} p^{1/(p-1)}$.

Let $B \in \mathbb{R}$ be an upper bound on the modulus of all complex roots of R(w).

Let $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)]$ and N := [6.076BM].

All solutions of $y'(x) = \frac{a(x)}{b(x)}y(x)$ are algebraic if and only if the p-curvatures of the differential equation vanish for all primes p:

- not dividing ∆;
- at most $\sigma := (2M + 1)N + 2M$.

Input $a(x), b(x) \in \mathbb{Z}[x], b(x)$ squarefree, $\deg(a(x)) < \deg(b(x))$.

Input
$$a(x), b(x) \in \mathbb{Z}[x]$$
, $b(x)$ squarefree, $\deg(a(x)) < \deg(b(x))$.

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B;$
- 2. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)], N := 10BM, \sigma := (2M+1)N + 2M, p \leftarrow 2;$
- 3. while $p \leq \sigma$:
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.

Input
$$a(x), b(x) \in \mathbb{Z}[x], b(x)$$
 squarefree, $\deg(a(x)) < \deg(b(x)) = n$. Coefficients bounded by H .

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B; \tilde{O}(n^{2} \log(H))$ bit operations
- 2. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)], N := 10BM, \sigma := (2M+1)N + 2M, p \leftarrow 2;$
- 3. while $p \leq \sigma$: $\tilde{O}(n^2\sigma)$ bit operations
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.
- Computing p-curvatures, [Bostan-Schost, 2009]

Input
$$a(x), b(x) \in \mathbb{Z}[x], b(x)$$
 squarefree, $\deg(a(x)) < \deg(b(x)) = n$. Coefficients bounded by H .

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \ \Delta, t, B; \ \tilde{O}(n^{2} \log(H))$ bit operations
- 2. $M := \lceil 2.826 \cdot \Delta^3 \cdot t(\Delta) \rceil$, N := 10BM, $\sigma := (2M+1)N + 2M$, $p \leftarrow 2$;
- 3. while $p \leq \sigma$: $\tilde{O}(n^2\sigma)$ bit operations
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.
- Computing p-curvatures, [Bostan-Schost, 2009]
- $\sigma = \tilde{O}((Hn)^{12n}).$

Input
$$a(x), b(x) \in \mathbb{Z}[x], b(x)$$
 squarefree, $\deg(a(x)) < \deg(b(x)) = n$. Coefficients bounded by H .

- 1. $R(w) := \operatorname{res}_{x}(b(x), a(x) w \cdot b'(x)) \in \mathbb{Q}[w], \Delta, t, B; \tilde{O}(n^{2} \log(H))$ bit operations
- 2. $M := [2.826 \cdot \Delta^3 \cdot t(\Delta)], N := 10BM, \sigma := (2M+1)N + 2M, p \leftarrow 2;$
- 3. while $p \leq \sigma$: $\tilde{O}((Hn)^{12n})$ bit operations
 - i. **if** $p \not\mid \Delta$, **then** compute the *p*-curvature;
 - ii. **if** p-curvature $\neq 0$, **then** return transcendental, **else** $p \leftarrow \text{nextprime}(p)$;
- 4. return algebraic.
- Computing p-curvatures, [Bostan-Schost, 2009]
- $\sigma = \tilde{O}((Hn)^{12n}).$

Alternative approaches: Given $a(x), b(x) \in \mathbb{Z}[x]$ of degree at most n and coefficients at most H, one can either compute $R(w) = \operatorname{res}_x(b(x), a(x) - w \cdot b'(x))$ and find its rational roots, or compute the indicial equations to decide transcendence.

• Polynomial in n and log(H).

- Polynomial in n and log(H).
- For $u(x) = \frac{2x+1}{x^2+x+1}$, $\sigma = 1926284$.

- Polynomial in n and log(H).
- For $u(x) = \frac{2x+1}{x^2+x+1}$, $\sigma = 1926284$. Runtime: ≈ 8 min for p-curvatures vs < 1 ms.

- Polynomial in n and log(H).
- For $u(x) = \frac{2x+1}{x^2+x+1}$, $\sigma = 1926284$. Runtime: ≈ 8 min for p-curvatures vs < 1 ms.
- ightarrow Try on random examples that will return transcendental.

- Polynomial in n and log(H).
- For $u(x) = \frac{2x+1}{x^2+x+1}$, $\sigma = 1926284$. Runtime: ≈ 8 min for *p*-curvatures vs < 1 ms.
- \rightarrow Try on random examples that will return transcendental.

Degree	Height	<i>p</i> -curv	IE	RT+RR
10	2^{10}	1 ms	12 ms	3 ms
20	2^{10}	2 ms	24 ms	10 ms
20	2^{20}	2 ms	25 ms	21 ms
160	2^{10}	0.4 s	1.8 s	2.4 s
160	2^{20}	0.4 s	1.9 s	4.0 s

Table: Average computation time of algorithms deciding transcendence of solutions on random rational function inputs of prescribed degree and height.

Perspectives

Make all proved cases of Grothendieck's p-curvature conjecture effective.

Perspectives

Make all proved cases of Grothendieck's p-curvature conjecture effective.

Thank you for your attention.