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Power series hierarchy

y(x) =
∑
n≥0

unxn ∈ Q[[x ]]

Algebraic series
y(x) is algebraic over Q(x) if ∃P(x ,Y ) ∈ Z[x ,Y ], P(x , y(x)) = 0.

D-finite series
y(x) is D-finite if ∃a0(x), . . . , ar (x) ∈ Z[x ] not all zero such that
ar (x)y (r)(x) + · · ·+ a0(x)y(x) = 0.
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Power series hierarchy

y(x) =
∑
n≥0

unxn ∈ Q[[x ]]

Algebraic series
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Theorem (Abel, 1827)
Algebraic series are D-finite.
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Deciding algebraicity

Abel’s problem

Let u(x) ∈ Q(x), decide if the nonzero solutions of y ′(x) = u(x)y(x) are algebraic.

[Risch, 1971], [Baldassari-Dwork, 1979], [Davenport, 1981], Risch’s algorithm.

Special case of Grothendieck’s conjecture, [Chudnovsky2, 1985]
All solutions of y ′(x) = u(x)y(x) are algebraic over Q(x) if and only if for almost all
prime numbers p, all solutions of y ′(x) = (u(x) mod p)y(x) are algebraic over Fp(x).
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The p-curvature conjecture

{
y ′(x) = u(x)y(x) (Eq)
y ′(x) = (u(x) mod p)y(x) (Eq)p

with u(x) = a(x)
b(x) ∈ Q(x).

To (Eq)p , attach the p-curvature u(p−1)(x) + u(x)p mod p ∈ Fp(x) [Jacobson, 1937].

Special case of Cartier’s Lemma
The p-curvature is zero if and only if (Eq)p has a basis of algebraic solutions.

Special case of Grothendieck’s p-curvature conjecture, [Chudnovsky2, 1985; Honda,
1974]
All solutions of (Eq) are algebraic over Q(x) if and only if for almost all prime numbers
p, the p-curvature of (Eq)p vanishes.
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From p-curvatures to polynomials

Theorem (Honda, 1974)

The p-curvature conjecture holds for equations y ′(x) = u(x)y(x) with u(x) = a(x)
b(x) ,

a(x), b(x) ∈ Q[x ].

Theorem (Kronecker, 1880; Chebotarev, 1926)
Let R(w) ∈ Q[w ] be irreducible. If for almost all prime numbers p the polynomial
R(w) mod p has a root in Fp , then R(w) has a root in Q, and hence it is linear.

Spoiler: Honda’s Theorem is equivalent to Kronecker’s Theorem.
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Towards effectivity

Theorem (Rothstein, 1976; Trager, 1976)
Let u(x) ∈ Q(x) be a rational function of the form

u(x) = a(x)
b(x) =

r∑
i=1

αi
x − βi ,

with a(x), b(x) ∈ Z[x ]. Then the residues αi are precisely the roots of

R(w) := resx(b(x), a(x)− w · b′(x)) ∈ Z[w ].
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Proof of Honda’s Theorem

y ′(x) = u(x)y(x) (Eq) with u(x) = a(x)
b(x) , and R(w) := resx(b(x), a(x)− w · b′(x)).

Proposition (Folklore; Honda, 1981)
The following are equivalent:
(1) (Eq) has an algebraic solution.
(2) We have deg a(x) < deg b(x),

all poles of u(x) are simple, and
R(w) splits completely in Q[w ].

Proposition (Honda, 1981)
Let p be a prime number. TFAE:
(1)p (Eq)p has an algebraic solution in Fp[[x ]].
(2)p We have deg a(x) < deg b(x), all poles

of u(x) are simple, and R(w) splits
completely in Fp[w ].

(3)p We have u(x)p + u(p−1)(x) mod p = 0.

Kronecker’s Theorem: (2)p for almost all prime numbers p implies (2).

Can we deduce (2) from (2)p for a finite number of primes?
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Effective Kronecker

Theorem (Chudnovsky2, 1985)
Let R(w) ∈ Z[w ] with leading coefficient ∆ ∈ Z.
There exists σ ∈ N such that R(w) splits completely over Q if and only if R(w) mod p
splits completely over Fp for all primes p:
• not dividing ∆,
• at most σ.

Theorem (Fürnsinn-P., 2025+)
In the previous theorem, one can choose σ = (2M + 1)N + 2M with
M :=

⌈
2.826 ·∆3 · t(∆)

⌉
, N := d6.076BMe, where t(∆) :=

∏
p|∆ p1/(p−1) and B ∈ R

is an upper bound on the modulus of all complex roots of R(w).

Criterion: If p ≤ σ, p 6 | ∆ and R(w) mod p does not split completely in Fp , then
R(w) does not split completely in Q.
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Hermite-Padé approximation

Given power series f1(x), . . . , fr (x) ∈ Q[[x ]] and n, s ∈ N, find polynomials Pi(x) ∈ Q[x ]
such that deg(Pi(x)) ≤ n and

P1(x)f1(x) + · · ·+ Pr (x)fr (x) ∈ x sQ[[x ]].

• r(n + 1) indeterminates, s linear homogeneous equations ⇒ s = r(n + 1)− 1.
[Hermite, 1873] e is transcendental, [Padé, 1894], [Mahler, 1931].

Idea to prove algebraicity: With fi(x) = f i−1(x), f (x) is algebraic if and only if for
the optimal Pi ’s, the remainder P1(x) + P2(x)f (x) + · · ·+ Pr (x)f r−1(x) vanishes for
large n, r .
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Chudnovskys’ proof of Kronecker’s Theorem
Proof.

By contradiction, assume R(w) has a root α /∈ Q. Write L := Q(α).
We know explicit Hermite-Padé approximants Pi(z) ∈ L[z], deg(Pi(z)) ≤ N to the
powers of (1− z)α

P0(z) + P1(z)(1− z)α + · · ·+ P2M(z)(1− z)2Mα = gzσ + O(zσ+1)

with σ = (2M + 1)N + 2M, g =
N!2M+1

σ!
∈ Q∗, P0(0) =

(
2M∏
j=1

(jα+N−1
N

))−1

.

For all γ ∈ L \ {0},
∣∣∣den(γ)[L:Q]NormL/Q(γ)

∣∣∣︸ ︷︷ ︸
∈Z

≥ 1.

Construct γM,N ∈ L, γM,N 6= 0, such that when N >> M >> 0,∣∣∣den(γM,N)
[L:Q]NormL/Q(γM,N)

∣∣∣ < 1.
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Effective Honda

Corollary [Chudnovsky2, 1985; Fürnsinn-P., 2025+]
Let a(x), b(x) ∈ Z[x ], deg(a(x)) < n := deg(b(x)) and
R(w) := resx(b(x), a(x)− w · b′(x)) ∈ Q[w ],
with leading coefficient ∆ := resx(b(x),−b′(x)), t :=

∏
p|∆ p1/(p−1).

Let B ∈ R be an upper bound on the modulus of all complex roots of R(w).
Let M :=

⌈
2.826 ·∆3 · t(∆)

⌉
and N := d6.076BMe.

All solutions of y ′(x) = a(x)
b(x)y(x) are algebraic if and only if the p-curvatures of the

differential equation vanish for all primes p:
• not dividing ∆;
• at most σ := (2M + 1)N + 2M.
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New algorithm and complexity

Input a(x), b(x) ∈ Z[x ], b(x) squarefree, deg(a(x)) < deg(b(x)).

Coefficients bounded
by H.

Output The nature (algebraic or transcendental) of the solutions of y ′(x) = a(x)
b(x)y(x).

1. R(w) := resx(b(x), a(x)− w · b′(x)) ∈ Q[w ], ∆, t,B;
2. M :=

⌈
2.826 ·∆3 · t(∆)

⌉
, N := 10BM, σ := (2M + 1)N + 2M, p ← 2;

3. while p ≤ σ:

Õ() bit operations

i. if p 6 | ∆, then compute the p-curvature;
ii. if p-curvature 6= 0, then return transcendental, else p ← nextprime(p);

4. return algebraic.
• Computing p-curvatures, [Bostan-Schost, 2009]
• σ = Õ((Hn)12n).
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Comparison

Alternative approaches: Given a(x), b(x) ∈ Z[x ] of degree at most n and coefficients
at most H, one can either compute R(w) = resx(b(x), a(x)− w · b′(x)) and find its
rational roots, or compute the indicial equations to decide transcendence.

• Polynomial in n and log(H).
•For u(x) = 2x+1

x2+x+1 , σ = 1926284.

Runtime: ≈ 8 min for p-curvatures vs < 1 ms.

→ Try on random examples that will return transcendental.



13/14

Comparison

Alternative approaches: Given a(x), b(x) ∈ Z[x ] of degree at most n and coefficients
at most H, one can either compute R(w) = resx(b(x), a(x)− w · b′(x)) and find its
rational roots, or compute the indicial equations to decide transcendence.

• Polynomial in n and log(H).

•For u(x) = 2x+1
x2+x+1 , σ = 1926284.

Runtime: ≈ 8 min for p-curvatures vs < 1 ms.

→ Try on random examples that will return transcendental.



13/14

Comparison

Alternative approaches: Given a(x), b(x) ∈ Z[x ] of degree at most n and coefficients
at most H, one can either compute R(w) = resx(b(x), a(x)− w · b′(x)) and find its
rational roots, or compute the indicial equations to decide transcendence.

• Polynomial in n and log(H).
•For u(x) = 2x+1

x2+x+1 , σ = 1926284.

Runtime: ≈ 8 min for p-curvatures vs < 1 ms.
→ Try on random examples that will return transcendental.



13/14

Comparison

Alternative approaches: Given a(x), b(x) ∈ Z[x ] of degree at most n and coefficients
at most H, one can either compute R(w) = resx(b(x), a(x)− w · b′(x)) and find its
rational roots, or compute the indicial equations to decide transcendence.

• Polynomial in n and log(H).
•For u(x) = 2x+1

x2+x+1 , σ = 1926284. Runtime: ≈ 8 min for p-curvatures vs < 1 ms.

→ Try on random examples that will return transcendental.



13/14

Comparison

Alternative approaches: Given a(x), b(x) ∈ Z[x ] of degree at most n and coefficients
at most H, one can either compute R(w) = resx(b(x), a(x)− w · b′(x)) and find its
rational roots, or compute the indicial equations to decide transcendence.

• Polynomial in n and log(H).
•For u(x) = 2x+1

x2+x+1 , σ = 1926284. Runtime: ≈ 8 min for p-curvatures vs < 1 ms.
→ Try on random examples that will return transcendental.



13/14

Comparison

• Polynomial in n and log(H).
•For u(x) = 2x+1

x2+x+1 , σ = 1926284. Runtime: ≈ 8 min for p-curvatures vs < 1 ms.
→ Try on random examples that will return transcendental.

Degree Height p-curv IE RT+RR
10 210 1 ms 12 ms 3 ms
20 210 2 ms 24 ms 10 ms
20 220 2 ms 25 ms 21 ms
160 210 0.4 s 1.8 s 2.4 s
160 220 0.4 s 1.9 s 4.0 s

Table: Average computation time of algorithms deciding transcendence of solutions on random
rational function inputs of prescribed degree and height.
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Perspectives

Make all proved cases of Grothendieck’s p-curvature conjecture effective.

Thank you for your attention.
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